

"2018 - AÑO DEL CENTENARIO DE LA REFORMA UNIVERSITARIA"

Maíz en baja densidad: experiencia de 4 años en Darregueira, Buenos Aires

Nieto, L.¹; Frolla, F.²; Zilio, J.²; Krüger, H.²

- ¹ Instituto Agrotécnico "San José Obrero", Darregueira, Buenos Aires. Ihnnieto69@outlook.com
- ² EEA INTA Bordenave., Buenos Aires. frolla.franco@inta.gob.ar

Introducción

El maíz es uno de los cultivos de verano con mayor proyección en cuanto a superficie sembrada en la región semiárida. Experiencias en la Chacra Experimental Integrada Barrow indican una gran plasticidad del cultivo ante la densidad de siembra (entre 25.000-35.000 plantas ha⁻¹) que le otorgan una gran adaptación a distintas condiciones climáticas y edáficas. En dicha zona, se recomiendan híbridos de maíz de 118 grados día a madurez (Ross, 2015).

La posibilidad de realizar planteos de baja densidad sin malezas, mediante el uso de maíces tolerantes a herbicidas de amplio espectro, sumado a la gran disponibilidad de principios activos en el mercado, permite ajustar un híbrido y la densidad óptima para cada ambiente. Tanto en Púan, como en otros partidos de la región semiárida, se observa un aumento en la superficie del cultivo en los últimos años. Aun así, son escasas las evaluaciones documentadas de distintos híbridos de maíz, manejados en baja densidad.

Con alumnos de diversos cursos del Instituto Agrotécnico San José Obrero, de Darregueira, se realizan desde hace 4 años evaluaciones de híbridos de maíz, registrando y analizando su comportamiento fenológico y rendimiento. La experiencia permite demostrar la adaptabilidad de un grupo diverso de materiales en la zona y se espera que sea de utilidad para los productores y/o asesores locales. El objetivo de este documento es mostrar los principales resultados de dicha experiencia.

Materiales y Métodos

Los ensayos se localizaron en el campo "La Blanqueada", cercano a la localidad de Darregueira. Durante las campañas 2013/14, 2014/15, 2016/17 y 2017/2018 se implantaron ensayos que comprendieron 18, 16, 27 y 35 híbridos respectivamente. El

diseño del ensayo consistió en "testigos apareados" donde cada hibrido era sembrado entre dos franjas de un maíz de referencia. Para el año 2014 el testigo fue ACA 417, para el resto de los años ACA 470. Cada franja estaba compuesta por 4 a 12 surcos sembrados a 70 cm por un largo de 200 – 300 m. La siembra fue mediante una sembradora Agrometal TX-2 con sistema de siembra mecánico. La densidad objetivo fue de 40.000 plantas.ha-1 para 2013/14, 34.000 plantas.ha-1 en 2014/15 y 27.000 plantas.ha-1 en las últimas dos campañas. El manejo del lote fue en siembra directa, con barbechos largos, libres de malezas, que permitieron llegar a la siembra del cultivo con el máximo contenido de agua posible en el perfil en función de las precipitaciones del año. En el cultivo, el control de plagas se realizó mediante los métodos convencionales para la zona. Para cada año se realizaron distintas transectas sobre el ensayo para evaluar la profundidad efectiva del suelo. Los resultados correspondientes a suelos someros (< 60 cm) se presentan de forma separada dado su impacto en la cantidad de agua disponible. La cosecha fue mecánica, mediante maquinaria tradicional ajustando el rendimiento de grano a 14,5% de humedad.

En búsqueda de una comparación más objetiva de los híbridos, se calculó el "Índice Apareado" (IA), que expresa el rendimiento de un híbrido en función del promedio del híbrido testigo sembrado a ambos lados.

$$Indice\ apareado\ (IA) = \frac{Rinde\ hibrido}{(\frac{Rinde\ testigo\ 1 + Rinde\ testigo\ 2}{2})}$$

Se consideró el registro de precipitaciones de la Estación Experimental Bordenave, cercana al sitio de estudio. Las precipitaciones mensuales fueron agrupadas según distintas etapas del ciclo del cultivo de maíz: barbecho (Abril-Octubre), Periodo Crítico (Enero-Febrero) y ciclo del maíz (Noviembre-Marzo).

Resultados

En los años evaluados existieron condiciones de buena disponibilidad hídrica (2015) y otras de déficit como 2014 o 2018 (Tabla 1). El rendimiento medio de los híbridos varió en función de la disponibilidad hídrica, observándose la mayor correlación entre el rendimiento medio del ensayo para cada año con la precipitación durante el barbecho (ABR-OCT).

Tabla 1. Precipitaciones medias ocurridas para distintas etapas del cultivo de maíz y rendimientos medios, máximos y mínimos alcanzados para cada año evaluado.

	Precipitaciones (mm)*			Rendimie	nto en grano (kg ha-1)
Año	ABR-OCT	ENE-FEB	NOV-MAR	Medio	Max	Min
2013/14	275	126	229	1995	3273	508
2014/15	697	283	486	7467	10038	5076
2016/17	394	238	438	4204	5382	2942
2017/18	460	57	184	4934	6307	2563

^{*} Las precipitaciones corresponden al ciclo de maíz, no al año calendario.

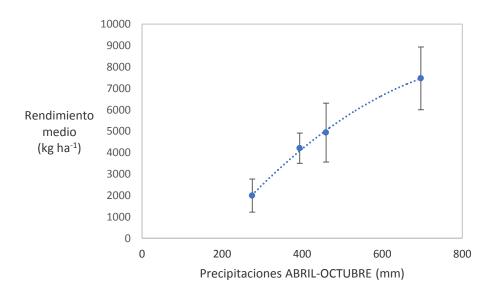


Figura 1. Relación entre precipitación acumulada en el periodo ABRIL-OCTUBRE y el rendimiento medio de maíz. Barras verticales indican el desvió estándar para cada campaña.

Campaña 2013/14

La tabla 2 resume el rendimiento de los híbridos para la campaña 2013/14. El máximo rendimiento alcanzado no coincidió con el máximo IA. El hibrido DK71-10VT3P tuvo una performance que casi duplicó al híbrido testigo apareado (ACA 417). Otros materiales del mismo semillero tuvieron una similar performance, como DK692VT3P y DK66-10VT3P, diferenciándose del siguiente grupo con IAs entre 1,38 y 1,00. El híbrido

PIONNER 2053I logró el máximo rendimiento del año (3273 kg ha⁻¹) aunque con un IA de 1,14. Este comportamiento se podría explicar suponiendo que el hibrido fue sembrado en una mejor parte del lote, lo cual permitió lograr mayor rendimiento en función de la mejora del ambiente, tanto para él, como para los maíces testigos. Los ACA 417 sembrados apareados con este material tuvieron un rendimiento medio de 2859 kg ha⁻¹, 600 kg más que el rendimiento medio del testigo en el ensayo. Un hijo de híbrido evaluado rindió un 40% menos que el testigo, mostrando la poca conveniencia de este tipo de estrategia productiva.

Tabla 2. Rendimiento de híbridos evaluados para la campaña 2013/14 y valores del Índice Apareado.

	Rendimiento en	Índice apareado
Híbridos	grano (kg ha ⁻¹)	(IA)
DK71-10VT3P	3025	1,92
DK692VT3P	2889	1,89
DK66-10VT3P	2760	1,81
DK7310 VT3PRO	1773	1,38
DK72-10VT3P	1259	1,20
DK72-10RR2	1258	1,20
PIONNER 2053I	3273	1,14
AX852CLMG	2754	1,00
WG1731WP300Y	2512	0,88
BG6503H	2668	0,86
DK7010VT3P	880	0,77
DK670MGRR2	1758	0,77
LG 30850 RR	1646	0,74
WG21317P0030	2017	0,71
NG20317P0030	1899	0,64
Hijo de híbrido	1756	0,59
LG 30820 RR	1268	0,45
BG6607YR	508	0,18
Testigo (ACA 417)	2253	
Promedio	1995	1,01
Máximo	3273	1,92
Mínimo	508	0,18

Campaña 2014/15

La tabla 3 resume el rendimiento de los híbridos para la campaña 2014/15. El rendimiento medio del ensayo fue el mayor alcanzado de todos los años, atribuible a

las buenas precipitaciones ocurridas durante el barbecho (697 mm) y el ciclo (486 mm). El IA mostró menos diferencias que en 2014, lo cual puede ser explicado por las mejores condiciones agrometeorológicas y al cambio de híbrido testigo (ACA 470). El máximo rendimiento e IA fue logrado por PAN4704YR con 10038 kg ha⁻¹ e IA= 1,27. DK72-10VT3P de buena performance en 2014, se colocó en segunda posición este año con igual IA que PAN4704YR. La posibilidad de obtener rendimientos aceptables en años restrictivos y responder ante la mejora del ambiente es una característica deseable en producción de regiones semiáridas, donde el efecto "año" genera impactos muy importantes en la producción lograda. El testigo de 2014 (ACA417) rindió un 30% menos que el nuevo híbrido testigo.

Tabla 3. Rendimiento de híbridos evaluados para la campaña 2014/15.

-		
	Rendimiento en	
Híbridos	grano (kg ha ⁻¹)	Índice apareado (IA)
PAN4704YR	10038	1,27
DK72-10VT3P	9829	1,27
DK7310VT3PRO	8535	1,08
PAN6502YR	8597	1,08
DK70-10VT3P	8530	1,06
DK670MGRR2	8377	1,03
AX852MGRR	7655	0,98
DKFEEDRR2	7683	0,98
DK72-50VT3P	7214	0,95
DK72-10RR2	7383	0,94
AX 7761	6923	0,85
PAN4842HR	6235	0,80
ACA417	5723	0,72
LG 30820 RR	5753	0,71
LG30840	5467	0,71
AX887BT	5076	0,63
Testigo ACA470	7926	
Promedio	7467	0,94
Máximo	10038	1,27
Mínimo	5076	0.63

Campaña 2016/17

Para el análisis del año 2017, el conjunto de híbridos fue separado en dos grupos (Tabla 4) según la profundidad de suelo de la parcela que ocuparon: suelos con profundidad menor a 60 cm y suelos con profundidad mayor a 60 cm. En suelos

profundos el mejor rendimiento fue obtenido por el híbrido KM 4321 FULL L CL (5382 kg ha⁻¹). El mejor IA fue logrado por AX7761 VT3PRO registrando un rendimiento 20% mayor al testigo apareado. AX7761, que tuvo una performance baja en la campaña 2014/15 (IA= 0,85), mejoró su comportamiento cuando las restricciones hídricas fueron mayores, con un IA de 1,21 (2016/17) y menor rendimiento que en 2014/15. En suelos someros, no hay evidencias para destacar un híbrido que sobresalga sobre el testigo (IAs cercanos a 1,0). En estos suelos las diferencias entre híbridos posiblemente estén enmascarados por cambios en la fertilidad y profundidad de suelos al existir sitios con 40 cm o menos, mezclados con sitios de 60 cm. De todas formas, los rendimientos logrados (mínimo: 2196 kg ha⁻¹) para un año normal en suelos con restricciones en su profundidad efectiva demuestran la factibilidad del uso de maíz como cultivo de verano en regiones semiáridas, trabajándose en bajas densidades (< 30.000 pl m⁻²) y con barbechos largos. El hijo de hibrido (ACA 468) nuevamente demuestra una baja performance sobre otros (35 % menos de rendimiento), como así el maíz pisingallo, aunque en este último dado su precio de mercado puede justificar su producción.

Tabla 4. Rendimiento de híbridos evaluados para la campaña 2017.

Suelo profundo.			Suelo somero.			
	Rendimiento			Rendimiento		
	en grano			en grano		
Híbridos	(kg ha ⁻¹)	IA	Híbridos	(kg ha ⁻¹)	IA	
AX7761 VT3PRO	4177	1,21	ACROX PN DOW	4762	1,02	
AX7784 VT3PRO	3997	1,20	ADV 8101	5134	1,00	
DK 7020 VT3PRO	4830	1,13	ACA 468	3752	0,98	
DK 7250RR	4596	1,11	LG 30820 RR	3606	0,90	
KM 4321 FULL L CL	5382	1,02	LG 30850 RR	2791	0,89	
KMB 4380	5141	1,01	ACA 480	2567	0,78	
KM 4200 GL STACK	4785	1,01	KM 4321 FULL	3258	0,73	
DK 6910 VT3PRO	4396	0,98	LG 30860 RR	2378	0,68	
DOBLE TRACCION	4187	0,98	I 550 VT3PRO	2196	0,66	
AX7822CL	3369	0,93	ACA468 Hijo Hib,	2495	0,65	
DK 7320 VT3PRO	3618	0,92	PIZINGALLO	3397	0,63	
I 767 MG	3220	0,90				
KMB 4229L	4751	0,89				
KM 3800 GL STACK	4147	0,89				
DK 7310 VT3PRO	3611	0,89				
TG PLUS	2942	0,70				
ACA 470	4316		ACA 470	4079		

Promedio	4204	0,98	Promedio	3367,92	0,81
Max	5382	1,21	Max	5134,20	0,81
Min	2942	0,70	Min	2195,51	0,81

Año 2017/18

De igual forma que en 2016/17 el grupo de híbridos se dividió en dos clases según profundidad, aunque en este caso existió una mayor proporción de suelos someros (≤40 cm). En promedio, los híbridos que se desarrollaron en suelos profundos, rindieron 2789 kg ha⁻¹ más que aquellos de suelos con escasa profundidad (Tabla 5). Dicha diferencia fue superior a la medida en 2017, posiblemente dada por una mayor proporción de suelos con 40 cm de profundidad y a severas restricciones hídricas durante el verano. Sin embargo, en los suelos someros se lograron rendimientos superiores a 2000 kg ha⁻¹ en todos los casos, con un máximo de 2600 kg ha⁻¹ para el híbrido testigo (ACA 470). El IA muestra híbridos cercanos al testigo (KM3800, ACRUX PW), pero ninguno lo supera en rendimiento medio.

A pesar de las restricciones ambientales del año, se lograron muy buenos rendimientos en suelos profundos (90 cm). El máximo rendimiento lo logró el híbrido ACA 470 (6307 kg ha⁻¹) seguido de LG30860 (6210 kg ha⁻¹). DK EXP. 7238 y DK 7320 VT3PRO, lograron los máximos IA (1,05 y 1,01), lo cual indica un leve incremento de rendimiento con respecto a los testigos apareados, correspondientes al 5% y 1% respectivamente. DK7310VT3PRO de buena performance en 2014 y 2015, fue superado por otros híbridos en los años 2017 y 2018.

Tabla 5. Rendimiento de híbridos evaluados para la campaña 2017.

Suelo proj	fundo.	Suelo somero.			
HIBRIDOS	Rendimiento	IA	HIBRIDOS	Rendimiento	IA
DK EXP.7238	5478	1,05	KM3800 GL STACK	2072	0,97
DK 7320 VT3PRO	5878	1,01	ACRUX PW	2342	0,93
ACA VG48	5667	0,97	LG 30820 RR	3606	0,90
LG30820	6188	0,93	AX 7784	2587	0,89
DK7220 VT3PRO	5966	0,93	LG 30850 RR	2791	0,89
DK7210 VT3PRO	6007	0,91	AX 7822	2301	0,85

Secretaría de Agroindustria

Ministerio de Producción y Trabajo Presidencia de la Nación

Max	6307	1,05 0,64	Max	3606	0,97 0,45
Promedio	4934	0,86	Promedio	2145	0,78
ACA 470	6307		ACA 470	2666	
LG30815	4120	0,64	PISINGALLO	1042	0,45
DK7310 VT3PRO	4179	0,65	KM 3916 GL STACK	1292	0,61
P2109 YHR	2590	0,70	KM 4229 L	1551	0,67
P2005 YHR	2563	0,78	NUCORN 2881	1567	0,67
ACA480	4135	0,79	DA 2017 CL	1567	0,67
LG30840	5860	0,83	LG 30860 RR	2378	0,68
LG30860	6210	0,84	KM 4200 GL STACK	1554	0,73
LG30850	6070	0,84	IPB 2650	2077	0,77
DK6910 VT3PRO	6131	0,85	DA 2704 RR	2077	0,77
P1815 YHR	2863	0,87	I 767 MG	2381	0,82
P1833 HR	2712	0,87	ADV 8101	2070	0,82
DK EXP.7329	4087	0,88	I 550 VT3PRO	2405	0,83
ACA 468	5667	0,91	AX 7761	2566	0,83
	DK EXP.7329 P1833 HR P1815 YHR DK6910 VT3PRO LG30850 LG30860 LG30840 ACA480 P2005 YHR P2109 YHR DK7310 VT3PRO LG30815 ACA 470	DK EXP.7329 4087 P1833 HR 2712 P1815 YHR 2863 DK6910 VT3PRO 6131 LG30850 6070 LG30860 6210 LG30840 5860 ACA480 4135 P2005 YHR 2563 P2109 YHR 2590 DK7310 VT3PRO 4179 LG30815 4120 ACA 470 6307 Promedio 4934	DK EXP.7329 4087 0,88 P1833 HR 2712 0,87 P1815 YHR 2863 0,87 DK6910 VT3PRO 6131 0,85 LG30850 6070 0,84 LG30860 6210 0,84 LG30840 5860 0,83 ACA480 4135 0,79 P2005 YHR 2563 0,78 P2109 YHR 2590 0,70 DK7310 VT3PRO 4179 0,65 LG30815 4120 0,64 ACA 470 6307 Promedio 4934 0,86	DK EXP.7329 4087 0,88 I 550 VT3PRO P1833 HR 2712 0,87 ADV 8101 P1815 YHR 2863 0,87 I 767 MG DK6910 VT3PRO 6131 0,85 DA 2704 RR LG30850 6070 0,84 IPB 2650 LG30860 6210 0,84 KM 4200 GL STACK LG30840 5860 0,83 LG 30860 RR ACA480 4135 0,79 DA 2017 CL P2005 YHR 2563 0,78 NUCORN 2881 P2109 YHR 2590 0,70 KM 4229 L DK7310 VT3PRO 4179 0,65 KM 3916 GL STACK LG30815 4120 0,64 PISINGALLO ACA 470 ACA 470 Promedio 4934 0,86 Promedio	DK EXP.7329 4087 0,88 I 550 VT3PRO 2405 P1833 HR 2712 0,87 ADV 8101 2070 P1815 YHR 2863 0,87 I 767 MG 2381 DK6910 VT3PRO 6131 0,85 DA 2704 RR 2077 LG30850 6070 0,84 IPB 2650 2077 LG30860 6210 0,84 KM 4200 GL STACK 1554 LG30840 5860 0,83 LG 30860 RR 2378 ACA480 4135 0,79 DA 2017 CL 1567 P2005 YHR 2563 0,78 NUCORN 2881 1567 P2109 YHR 2590 0,70 KM 4229 L 1551 DK7310 VT3PRO 4179 0,65 KM 3916 GL STACK 1292 LG30815 4120 0,64 PISINGALLO 1042 ACA 470 6307 ACA 470 2666 Promedio 4934 0,86 Promedio 2145

Si bien se observaron buenos rendimientos de distintos híbridos de maíz, el paso previo antes de la elección del cultivar es la elección del lote. Suelos profundos con alta capacidad de retención de agua deber ser mantenidos libres de malezas por tiempos prudenciales para asegurar un arranque con el perfil completo de humedad. En la Figura 1, se observa la importancia de las precipitaciones previas a la siembra, que debe ser capitalizada en el suelo para obtener rendimientos aceptables. En veranos húmedos, de baja frecuencia en la serie histórica, los rendimientos pueden superar los 5000 kg ha⁻¹. Para años normales y en función de lo observado a campo, es posible estimar rendimientos objetivos en el rango de 2500 kg ha⁻¹ a 3500 kg ha⁻¹. Sobre el comportamiento de los híbridos, en años normales se observó un mejor comportamiento de híbridos con tecnología de doble espiga o espiga flex, sobre otros sin dicha característica. En condiciones húmedas, los híbridos macolladores permitirían lograr mayores rendimientos potenciales. Por otro lado, se observó un desempeño desfavorable de híjos de híbridos, sea cual fuere la cualquier condición climática, afirmando la inconveniencia de su uso.

Con respecto a la densidad, se exploró una disminución consistente de la densidad de plantas en las sucesivas campañas, sin que esto afectara significativamente los rendimientos. A futuro se plantea trabajar con densidades aún más bajas, cercanas a las 22.000-23.000 plantas ha⁻¹ a cosecha, esperando mantener los rendimientos obtenidos con densidades mayores.

Secretaría de Agroindustria

Conclusiones

El maíz es un cultivo que se adapta a la región semiárida del sudoeste bonaerense, siempre que se realice bajo las prácticas adecuadas de producción. En el mercado, existe un gran número de materiales que permiten lograr rendimientos aceptables bajo las condiciones fluctuantes de la zona. El presente informe no revela cuál es el mejor híbrido para la zona, pero sí pretende ser una guía para la toma de decisiones, aportando en la evaluación comparativa de diversos materiales, poniendo en valor y a disponibilidad del público general, la interesante información obtenida.

Agradecimientos

Se agradece la colaboración de los alumnos en la realización del ensayo del "Insituto Agro técnico San José Obrero" y a las distintas empresas participantes: Dekalb, Nidera, ACA, Pioneer, KWS, Limagrain, Don Atilio, Nuseed, Alianza Semillas, Illinois, Advanta Semillas y Pannar.

